Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339373

RESUMO

The present study focuses on the development of a methodology for evaluating the safety of MNH systems, through the numerical prediction of the induced temperature rise in superficial skin layers due to eddy currents heating under an alternating magnetic field (AMF). The methodology is supported and validated through experimental measurements of the AMF's distribution, as well as temperature data from the torsos of six patients who participated in a clinical trial study. The simulations involved a computational model of the actual coil, a computational model of the cooling system used for the cooling of the patients during treatment, and a detailed human anatomical model from the Virtual Population family. The numerical predictions exhibit strong agreement with the experimental measurements, and the deviations are below the estimated combined uncertainties, confirming the accuracy of computational modeling. This study highlights the crucial role of simulations for translational medicine and paves the way for personalized treatment planning.

2.
Phys Med Biol ; 65(17): 175005, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32580168

RESUMO

The medical imaging of patients with a cochlear implant inside a Magnetic Resonance Imaging (MRI) scanner carries the risk of power deposition in the tissues at the tip of the implant lead, which may result in their heating. In order to assess this risk, ISO/TS 10 974 (2018) describes a methodology (Tier 3 approach) whereby a radiofrequency electrical model for the implant lead in the form of a transfer function is constructed. The construction of the transfer function takes place by assuming that a homogenous medium surrounds the implant, whereas, in reality, implants can traverse various tissues of different electrical properties. The results show that the use of a High Permittivity Medium (HPM) overestimates the Tier 3 calculated deposited power by almost 6 dB, whereas a Low Permittivity Medium (LPM) underestimates it by 9 dB, compared to the in vivo power deposition in three virtual human models, obtained following the Tier 4 approach of ISO/TS 10 974(2018). Since the Tier 3 approach requires less computational resources compared to Tier 4, we suggest its modification with the use of two media (mixed media approach), where implant is immersed. By carefully choosing the media electrical properties, it is possible to calculate power deposition values at the lead tip that differ less than 1 dB from the in vivo ones.


Assuntos
Implantes Cocleares , Imageamento por Ressonância Magnética , Modelos Teóricos , Ondas de Rádio , Eletricidade , Temperatura Alta , Humanos
3.
Comput Biol Med ; 43(10): 1321-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24034722

RESUMO

A numerical study of the performance of antenna arrays used in microwave ablation (MWA) is carried out. Double-slot coaxial antennas in triangular and square configurations are studied. Clinical (healthy vs. malignant) and experimental (in vs. ex vivo) scenarios for hepatic cancer treatment are modeled, and further application in bone and lung tissue is examined. It is found that triangular arrays can create spherical ablation zones, while square configurations result in flatter ones. Thresholds in power and application times for creating continuous ablation zones are calculated, and the characteristics of the latter are quantified.


Assuntos
Terapia a Laser/instrumentação , Micro-Ondas , Modelos Teóricos , Simulação por Computador , Temperatura Alta , Humanos , Terapia a Laser/métodos
4.
Phys Med Biol ; 58(10): 3191-206, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23603829

RESUMO

Microwave ablation is a technique used in treating hepatocellular carcinoma, especially in cases where surgical removal is impossible. In the present study we are investigating the effects of design characteristics of a coaxial slot antenna (single- versus double-slot, slot-to-tip distance and slot size) on the ablation zone characteristics (dimensions and shape). The specific absorption rate field and the temperature rises are calculated for a variety of application times and powers. A plateau in the ablation zone dimensions in healthy and cirrhotic liver models is predicted, but not in malignant ones. It is found that the value of the perfusion rate (which is different for each clinical case) is of crucial importance in order to correctly estimate the ablation zone. An underestimation of dimensions is expected, if higher perfusion rates are used (i.e., values for healthy tissue rather than malignant). In contrast, an exact determination of the values of relative permittivity and conductivity is less significant for predicting the ablation zone.


Assuntos
Técnicas de Ablação/instrumentação , Fígado/efeitos da radiação , Micro-Ondas/uso terapêutico , Modelos Biológicos , Desenho de Equipamento , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA